Proof that the set of all vectors with one strictly positive real entry is a vector space

Proof that \(\mathbb{R}_{>0}^{1}\) is a vector space #

screenshot from https://en.wikipedia.org/wiki/Isomorphism#Logarithm_and_exponential

screenshot from https://en.wikipedia.org/wiki/Isomorphism#Logarithm_and_exponential

Statement #

Denote by \(\mathbb{R}_{>0}^{1}\) as the set of all vectors with one strictly positive real entry.

\[ \mathbb{R}_{>0}^{1}=\left\{\begin{bmatrix}x\end{bmatrix}\in\mathbb{R}^{1}\mid x\in\mathbb{R}\land x>0\right\} \]

Vector addition in \(\mathbb{R}_{>0}^{1}\) is defined as the following (\(\vec{\mathbf{u}},\vec{\mathbf{v}}\in\mathbb{R}_{>0}^{1}\)):

\[\vec{\mathbf{u}}\oplus\vec{\mathbf{v}}=\begin{bmatrix}u_{1}v_{1}\end{bmatrix}\]

\(u_{1}v_{1}\) means the first (and only) entry of \(\vec{\mathbf{u}}\) multiplied by the first (and only) entry of \(\vec{\mathbf{v}}\) (product of scalars).

Scalar multiplication in \(\mathbb{R}_{>0}^{1}\) is defined as the following (\(\vec{\mathbf{u}}\in\mathbb{R}_{>0}^{1}\) and \(c\in\mathbb{R}\)):

\[c\odot\vec{\mathbf{u}}=\begin{bmatrix}\left(u_{1}\right)^{c}\end{bmatrix}\]

\(\left(u_{1}\right)^{c}\) means the first (and only) entry of \(\vec{\mathbf{u}}\) to the power of \(c\) (exponentiation of a strictly positive real number to a real power).

Prove that \(\mathbb{R}_{>0}^{1}\) is a vector space.

Proof using axioms #

A useful reference for these axioms can be found here.

  1. Closure under vector addition
  2. Closure under scalar multiplication
  3. Existence of zero vector
  4. Existence of negative vector
  5. Associative law for vector addition
  6. Commutative law for vector addition
  7. Distributive law for scalar multiplication over vector addition
  8. Distributive law for scalar multiplication over scalar addition
  9. Associative law for scalar multiplication
  10. Unity law for scalar multiplication

I’ll leave axioms 1, 2, 5, 6, 7, 8, 9, and 10 as an exercise for the reader (unless there is a request – feel free to contact me!).

Axioms 3 and 4 are interesting to consider.

Axiom 3 (existence of zero vector): there exists \(\vec{\textbf{0}}\in\mathbb{R}_{>0}^{1}\) such that \(\vec{\textbf{u}}\oplus\vec{\textbf{0}}=\vec{\textbf{u}}=\vec{\textbf{0}}\oplus\vec{\textbf{u}}\) for all \(\vec{\textbf{u}}\in\mathbb{R}_{>0}^{1}\)

  • The important realization here is that \(\vec{\textbf{0}}\) is \(\begin{bmatrix}1\end{bmatrix}\), not \(\begin{bmatrix}0\end{bmatrix}\).

Axiom 4 (existence of negative vector): for each \(\vec{\textbf{u}}\in\mathbb{R}_{>0}^{1}\), there exists \(\vec{\textbf{v}}\in\mathbb{R}_{>0}^{1}\) such that \(\vec{\textbf{u}}\oplus\vec{\textbf{v}}=\vec{\textbf{0}}=\vec{\textbf{v}}\oplus\vec{\textbf{u}}\)

  • Based on what we noted about \(\vec{\textbf{0}}\) in axiom 3, the important realization here is that \(\vec{\textbf{v}}\) is \(\begin{bmatrix}\frac{1}{u_{1}}\end{bmatrix}=\begin{bmatrix}\left(u_{1}\right)^{-1}\end{bmatrix}\), not \(\begin{bmatrix}-u_{1}\end{bmatrix}\). Note that \(\begin{bmatrix}\left(u_{1}\right)^{-1}\end{bmatrix}\) is equivalent to \(-1\odot\vec{\textbf{u}}\).

Proof using isomorphism from \(\mathbb{R}_{>0}^{1}\) onto \(\mathbb{R}^{1}\)[needs revision] #

Caution

This section may not be completely accurate and needs revision. Refer to https://math.stackexchange.com/questions/5070460/true-or-false-a-space-that-is-isomorphic-to-a-vector-space-must-also-be-a-vecto. Feel free to contact me if you are interested in improving this section.

Perhaps it’s more accurate to think of this section as “Proof that \(\mathbb{R}_{>0}^{1}\) is isomorphic to \(\mathbb{R}^{1}\), after we have established that \(\mathbb{R}_{>0}^{1}\) is a vector space.”

Define the transformation (or function or mapping) \(T\colon\mathbb{R}_{>0}^{1}\to\mathbb{R}^{1}\) as \(T\left(\vec{\mathbf{u}}\right)=\begin{bmatrix}\log_{w}\left(u_{1}\right)\end{bmatrix}\) where \(w\) is an arbitrary strictly positive real number that is an element of \(\left(0,1\right)\cup\left(1,\infty\right)\). For example, it can be said without loss of generality that \(T\left(\vec{\mathbf{u}}\right)=\begin{bmatrix}\log_{e}\left(u_{1}\right)\end{bmatrix}=\begin{bmatrix}\ln\left(u_{1}\right)\end{bmatrix}\). To prove that \(T\) is an isomorphism from \(\mathbb{R}_{>0}^{1}\) onto \(\mathbb{R}^{1}\), we can prove that \(T\) is one-to-one (injective), onto \(\mathbb{R}^{1}\) (surjective), and linear.

To prove that \(T\) is one-to-one (injective), we can prove that if \(T\left(\vec{\mathbf{u}}\right)=T\left(\vec{\mathbf{v}}\right)\), then \(\vec{\mathbf{u}}=\vec{\mathbf{v}}\).

\[T\left(\vec{\mathbf{u}}\right)=T\left(\vec{\mathbf{v}}\right)=\begin{bmatrix}\log_{w}\left(u_{1}\right)\end{bmatrix}=\begin{bmatrix}\log_{w}\left(v_{1}\right)\end{bmatrix}\] \[w^{\log_{w}\left(u_{1}\right)}=w^{\log_{w}\left(v_{1}\right)}\Rightarrow u_{1}=v_{1}\Rightarrow\vec{\mathbf{u}}=\vec{\mathbf{v}}\]

To prove that \(T\) is onto \(\mathbb{R}^{1}\) (surjective), we can prove that for any \(\vec{\mathbf{x}}\in\mathbb{R}^{1}\), there exists \(\vec{\mathbf{u}}\in\mathbb{R}_{>0}^{1}\) such that \(T\left(\vec{\mathbf{u}}\right)=\vec{\mathbf{x}}\).

\[T\left(\vec{\mathbf{u}}\right)=\vec{\mathbf{x}}=\begin{bmatrix}x_{1}\end{bmatrix}=\begin{bmatrix}\log_{w}\left(u_{1}\right)\end{bmatrix}\Rightarrow\vec{\mathbf{u}}=\begin{bmatrix}w^{x_{1}}\end{bmatrix}\]

To prove that \(T\) is linear, we can prove that \(T\left(\vec{\mathbf{u}}\oplus\vec{\mathbf{v}}\right)=T\left(\vec{\mathbf{u}}\right)+T\left(\vec{\mathbf{v}}\right)\) and that \(T\left(c\odot\vec{\mathbf{u}}\right)=cT\left(\vec{\mathbf{u}}\right)\) for all scalars \(c\in\mathbb{R}\).

\[T\left(\vec{\mathbf{u}}\oplus\vec{\mathbf{v}}\right)=\begin{bmatrix}\log_{w}\left(\left(\vec{\mathbf{u}}\oplus\vec{\mathbf{v}}\right)_{1}\right)\end{bmatrix}=\begin{bmatrix}\log_{w}\left(u_{1}v_{1}\right)\end{bmatrix}=\begin{bmatrix}\log_{w}\left(u_{1}\right)+\log_{w}\left(v_{1}\right)\end{bmatrix}\] \[T\left(\vec{\mathbf{u}}\oplus\vec{\mathbf{v}}\right)=\begin{bmatrix}\log_{w}\left(u_{1}\right)\end{bmatrix}+\begin{bmatrix}\log_{w}\left(v_{1}\right)\end{bmatrix}=T\left(\vec{\mathbf{u}}\right)+T\left(\vec{\mathbf{v}}\right)\] \[T\left(c\odot\vec{\mathbf{u}}\right)=\begin{bmatrix}\log_{w}\left(\left(c\odot\vec{\mathbf{u}}\right)_{1}\right)\end{bmatrix}=\begin{bmatrix}\log_{w}\left(\left(u_{1}\right)^{c}\right)\end{bmatrix}=\begin{bmatrix}c\log_{w}\left(u_{1}\right)\end{bmatrix}\] \[T\left(c\odot\vec{\mathbf{u}}\right)=c\begin{bmatrix}\log_{w}\left(u_{1}\right)\end{bmatrix}=cT\left(\vec{\mathbf{u}}\right)\]

In the proof of linearity above, be cautious to properly keep track of whether a vector is in \(\mathbb{R}_{>0}^{1}\) or \(\mathbb{R}^{1}\).

Therefore, \(T\) is an isomorphism from \(\mathbb{R}_{>0}^{1}\) onto \(\mathbb{R}^{1}\). Because an isomorphism exists from \(\mathbb{R}_{>0}^{1}\) onto \(\mathbb{R}^{1}\), the space \(\mathbb{R}_{>0}^{1}\) is isomorphic to \(\mathbb{R}^{1}\) (\(\mathbb{R}_{>0}^{1}\cong\mathbb{R}^{1}\)).

“Hence, as far as their vector space properties are concerned, the spaces \(V\) and \(W\) are identical except for notation. Because addition and scalar multiplication in either space are completely determined by the same operations in the other space, all vector space properties of either space are completely determined by those of the other.”

Since \(\mathbb{R}_{>0}^{1}\cong\mathbb{R}^{1}\) and \(\mathbb{R}^{1}\) is a vector space, we can conclude that \(\mathbb{R}_{>0}^{1}\) is a vector space.[needs revision]

Miscellaneous #

\[c\odot\vec{\mathbf{u}}=\begin{bmatrix}\left(u_{1}\right)^{c}\end{bmatrix}\Rightarrow c=\log_{u_{1}}\left(\left(c\odot\vec{\mathbf{u}}\right)_{1}\right)\]

For any \(\vec{\mathbf{w}}\) such that \(w_{1}\in\left(0,1\right)\cup\left(1,\infty\right)\) and any \(\vec{\mathbf{x}}\in\mathbb{R}_{>0}^{1}\), we can find a scalar \(c\) such that \(c\odot\vec{\mathbf{w}}=\vec{\mathbf{x}}\). Therefore, \(c\odot\vec{\mathbf{w}}\) spans \(\mathbb{R}_{>0}^{1}\). Since there is \(1\) basis vector, the dimension of the vector space is \(1\).

References #

https://math.stackexchange.com/questions/1332747/proof-that-mathbbr-is-a-vector-space

https://math.stackexchange.com/questions/1361445/proving-that-v-is-a-vector-space-if-ab-ab-and-a-b-ab

https://www.stat.uchicago.edu/~lekheng/courses/110f07/math110-hw1sol.pdf

https://www.math.stonybrook.edu/~scott/mat310.spr05/docs/LogAsIsomorphism.pdf

https://sites.lafayette.edu/thompsmc/files/2015/12/HW7_2_Key.pdf

http://matematika.reseneulohy.cz/2504/the-space-of-positive-real-numbers

https://proofwiki.org/wiki/Definition:Strictly_Positive/Real_Number

https://math.emory.edu/~lchen41/teaching/2020_Fall/Section_7-3.pdf

David Clark Lay, Steven Ramer Lay, Judith Joanne McDonald. Linear Algebra and Its Applications. Pearson. 5th edition, 2016. ISBN-13 9780321982384. ISBN-10 032198238X.

https://math.stackexchange.com/questions/5070460/true-or-false-a-space-that-is-isomorphic-to-a-vector-space-must-also-be-a-vecto